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The ability of amphiphilic block copolymers to self-assemble Scheme 1. Successive Steps during the Formation of )
into ordered structures (micelles, lamellae, vesicles, etc.) if dissolved BECCOY;%}?'PB“A Micellar Aggregates in Water and Their Protein
in a selective solvent is well-knowhln recent years, the interest
in these nano-organized objects as potential delivery vehicles for
bioactive agents has grown enormously, due to the fact that they

5 PECVPD
) -PBuA
. Saltaddition

can not only stabilize hydrophobic molecules with otherwise limited Dlatysis
water solubility but also decrease their eventual high toxicity to oo o
healthy cells“2However, targeting tumor sites and associated cells negativelly charged allcctewrn

still remains a significant challenge for the development of micelle-
mediated drug delivery systems and in vivo imaging as$&gveral
strategies have been developed to achieve these goals, which consist
mainly in (i) the use of stimuli (pH, temperature, applied magnetic
fields)-responsive macromolecules at near physiological conditions,
and (ii) the utilization of molecular markers recognizing specific
sites in cancerous tissu&dn both cases, landmark advances seem
to be those linking the biological world, with its elaborate dibtbek copotymer micelle
architectures, properties, and functions, to delivery nano-carriers.
Within this context, the interaction between nanosized lipid-based
assemblies and annexina family of proteins that participate in a
variety of membrane-related processes, such as blood coagulatio
and inflammation, and bind to biological membranes through
negatiely charged phospholipids a calcium-dependent manrer
has recently attracted increasing attention worldWwiSech protein
binding process is reversible, and removal of calcium ions by =
chelating agents leads to a liberation of annexins from the
phospholipid matrix (Supporting Information (SI), Section 1).

DepenS:_ng on the_ etnwrotnm(_atﬂtal sur_l;(_)ur;dlngs, ?mtem'?ecor?edPECVPD corona bearing negagly charged phosphate moieties
assemolies may interact with speciiic types of receplors. For (Scheme 1A)which are potential binding sites for Annexin-A5.

g]:éingz’glit eé:go;nzﬁseaﬁ;g; E)l:‘r?r?erss\tl\rlg: h'g\:naepqg_tztéct:% tg.sn ha:ge The polyelectrolyte behavior of PECVREL-PBuAgs aggregates
velop : 9 Xl INAING 10 ot hear physiological pH (7.5) and in the presence of salts

phosphatidylserine (PS) moieties, whose exposition is Cons'dered(conditions at which Annexin-A5 is stable) was first examined in

as a hallmark of apoptostsConsequently, great potential for detail by Static and Dynamic Light Scattering (SDLS) and

?(;T/lil:]ir:aex?r?;? Vmggoggggnfﬁ?:scémer;:?Caéma in;': de\);ggif:tlii) Transmission Electron Microscopy (TEM) (SI, Section 3) in order
9 9. ' to establish the micelle structure before protein decoration. As

which can be ultimately engln_eered to Ioad_ either image contrast observed in DLS experiments summarized in Figure 1.1, the self-
agents,_ such as h_ydrophob|c ron na_nopartlc_les, or a_lCt'Ve drugs. assembly of PECVPDR-PBUA copolymer in pure water (no added
:n this perspetc):lyve,. our ((j:halltengg IS tt;). b;"ld tprotelli?-dtecorated salt) originated two distinct relaxation times of well-defined
pobymter t?ssi:m 'es Illn or erd ofglve l:fl IOI)< unc |o|na|y 0 more spherical nano-objects (also identified in cryo-TEM (Figure 1.11.A)
robust objects (_mlce es made from Block Copolymer of Nano- 4t micrographs (Figure S14)), whose apparent hydrodynamic
qrganlzed bqlk fllms) and offer another possibility as compared to diameters (R were 8 and 110 nm (curve A). Upon salt addition
liposomes with thin and deformable bilayérs. (either NaCl or CaG) (curve B), one single relaxation time was

A5Her?|r_1 v;/edr%pl)orlt( the (?rlglnal)_ rel\ller5|ble bmt(.j'?g c: A_nnexT- observed corresponding to a size &.2= 78 nm. Such a decrease
protein fo diblock Copolymer micefar nanoparticies Naving POy= a5 4150 confirmed by cryo-TEM (Figures 1.11.B). The addition of

E)(lt-eltf;(zylcaatlgo(r;yllg)vx)y Ig:%zeg?]g'_c:*%Cfgriifxim;:dmpgé in 1.3 mg/mL of Annexin-A5 in a buffer solution (20 mM Tris-HCI,
“ty y el u e Sohamo 1 I;EQJCV;,’B% " bH 8.0, 0.02% Nah| ~200 mM NaCl) to a 0.5 mg/mL PECVRP
water, respectively, as summarized in Scheme L. b-PBuAgs micellar solution in the presence of 50 mmol/L of NaCl
t LCPO-ENSCPB. d?d !’lOt . provoKe noticeable changes in both. particle siz.e. and
*UBS-IECB. distribution profile (curve C). Under these experimental conditions,

block copolymer can be synthesized by Atom Transfer Radical

Polymerization (ATRP%.In the present study, PBuyé-Br was used
as macroinitiator to polymerize the DECVP monorf&ubsequent
rJfwo-step conversion of-P(O)(OCH), groups into—P(O)(OH),
phosphonic diacid afforded the mentioned amphiphilic block
copolymer (SI, Section 2).

When dissolved in water (a solvent thermodynamically good for
ECVPD), the PECVPE-b-PBuAgs diblock self-assembled, as
expected, into spherical micellar aggregates. Therefore, these nano-
objects are formed by a hydrophobic PBUA core amy@rophilic
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Figure 1. (1) Distribution of relaxation times A(t) obtained using CONTIN
analysis of autocorrelation functions C(q,t) (DLS) recorded during prepara-
tion steps of protein (Annexin-A5)-decorated diblock copolymer micellar
aggregates. In all cases, the relaxation frequeficy ¢1) is g>-dependent

(q is the wavevector). (II) Cryo-TEM images corresponding to solutions

A, B, and D in Scheme 1 and Figure 1.| (scale kab0 nm).
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Figure 2. QCM-D data showing the formation of Annexin-A5/PECVPD-
b-PBUA assemblies, as follows: (A) deposition of a lipid bilayer; (B)
deposition of A5 dimers; (C) after addition of PECVim-PBuAgs micellar
solution; (D) further addition of Annexin-A5; (E) after addition of EGTA.
Solutions B-D contained 2.0 mmol/L of Cagl

when compared to that of Annexin-A5/liposome systems, for which
the size shift due to protein surface binding was virtually equivalent
to a protein monolayer thickness 2 4 nm) because liposomes
exhibit phosphate moieties exposed at their periphery (Scheme S1).
The slow relaxation mode in curve D was attributed to large
aggregates in solution, possibly induced by protein interaction
connecting different particles since Annexin-A5 has multiple
potential C&" binding sites?

The addition of EGTA (a Cd-selective chelating agent) to
solutions containing Annexin-A5/micelle assemblies resulted in a
clear decrease in the size (curve E in Figures 1.l and S16) as a
result of Annexin-A5 release from the micelle.

Similarly, QCM-D measurements revealed variations in the
resonance frequency and dissipation values upon addition of
PECVPDb-PBUA micellar solution to a monolayer of chemically
engineered “double” Annexin-A5 molecules (Figure 2C). The same
behavior could be evidenced when Annexin-A5 was added to a
layer of deposited micelles (Figure 2D). These assembled objects
were stable and not affected by rinses. As for DLS, disassembly
occurred when a chelating agent was added (Figure 2E).

In summary, polymeric micellar assemblies were decorated with
Annexin-A5 protein, originating nanosized structures capable of
participating in molecular recognition processes, while having a
cargo space for hydrophobic molecules. The latter can be easily
tailored through rather simple polymer chemistry. These new
objects, whose decoration is reversible, find applications, for
example, in micelle-mediated target imaging and drug delivery and
controlled fabrication of biochips.
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